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Abstract

In this study, the evolution of the velocity field and scalar concentration fields in stably stratified shear flow is studied using direct
numerical simulations. Two cases with vertical mean shear and horizontal mean shear are compared. In both cases, the growth of the
turbulent kinetic energy weakens as the Richardson number is increased. However, the horizontal shear case shows a stronger growth
of the turbulent kinetic energy than the vertical shear case for a given Richardson number. The ordering of the velocity components
was found to change from streamwise > horizontal > vertical in the vertical shear case to streamwise > vertical > horizontal in the
horizontal shear case. The fluctuation level of a passive species variable with a vertical mean gradient was observed to be stronger in
the horizontal shear case. The ratio of the vertical turbulent eddy diffusivity to the horizontal turbulent eddy diffusivity was found to

be larger in the horizontal shear case. © 2000 Begell House Inc. Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

Shear and stratification are important features of turbulent
flow in geophysical, environmental, and engineering applica-
tions. Nutrients, pollutants, or reactants present in these flows
are transported and mixed by the turbulent motion. However,
the turbulence evolution is influenced by the competing effects
of shear and stratification. A review of geophysical turbulence
can be found in Caldwell (1987) and in Caldwell and Moum
(1995).

In this study, the prototypical example of stratified shear
flow with uniform vertical stratification S, = d0g/0x; and uni-
form vertical shear Sy = 0U, /0x3 or uniform horizontal shear
Sy = U, /0x, is considered. In addition, two passive species
variables C; are introduced with uniform mean gradients in the
vertical direction H3 = aa/ Ox; and in the horizontal direction
Hz = 6C2 / 6)62.

Previous work has been focused on the vertical shear case.
Laboratory experiments have been performed by Rohr et al.
(1988) in a salt-stratified water channel and by Piccirillo and
Van Atta (1997) in a thermally stratified wind tunnel. Direct
numerical simulations have been performed by Gerz et al.
(1989), Holt et al. (1992), and Jacobitz et al. (1997). In these
investigations, the gradient Richardson number Ri = N?/S?
was identified as the primary parameter in stratified shear flow.
Here N = (—gS,/ po)'/? is the Brunt-Viisild frequency, S the
shear rate, g the gravity acceleration, and p, the ambient
density. Note that S can refer to the vertical shear rate Sy was
well as to the horizontal shear rate Sy. Passive species variables
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were included in the large eddy simulations by Kaltenbach
et al. (1994). It was found that the turbulent mixing of these
concentration fields is stronger in the horizontal direction than
in the vertical direction.

Nonvertical shear flow has been studied only recently by
Jacobitz and Sarkar (1998). It was found that the turbulent
fluctuations as well as the vertical transport are stronger in the
horizontal shear case. However, it was impossible to compare
horizontal momentum and mass transfer in the horizontal
shear simulations, since the mass transfer was always in the
vertical direction. The introduction of concentration fields
makes such a comparison possible in the present study.

A number of geophysical and environmental applications
may have a significant amount of horizontal shear. Farmer
et al. (1995) observed strong horizontal shear and mixing in
Haro Strait and so did the numerical simulations by Foreman
et al. (1993) of the same flow. Farmer et al. report horizontal
shear as large as Sy = 0.15 s™! at the frontal zone between the
confluence of tidal waters with different densities from the
Haro and Spieden Channels. The vertical shear can be esti-
mated from the maximum current speed of 1 m s~! and layer
thickness of 50 m as Sy = 0.02 s~!. Lueck and Mudge (1997)
found greatly increased dissipation rates in the vicinity of a
shallow seamount. Although vertical shear is large in the
vicinity of bottom topography, the horizontal shear compo-
nent can be substantial due to the horizontal variability of the
topographic features. Mixing near boundaries may be an
important contributor to the overall budget of ocean mixing as
proposed by Armi (1978) and thus reconcile the apparent
order of magnitude larger vertical diffusivity inferred from
global budgets by Munk (1966) with respect to that observed
in the main thermocline (see for example, Gregg, 1987). If
boundary mixing is indeed important, then flows with more
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Notation S horizontal or vertical shear rate
Su horizontal shear rate, 0U; /0x,
C; total passive scalar Sv vertical shear rate, 6U1/6x3
Ci ﬂuctuating passive scalar Sﬂ vertical stratification rate, 8@/6}63
g gravity acceleration Sc Schmidt number, v/
H, horizontal mean gradient, 0C,/0x, U total velocity
H; vertical mean gradient, 8C3/0x; u; ﬂuctpatlng veloqty o
K turbulent kinetic energy, wu;/2 o passive S(I:alar. cmfuswny
K, potential energy, —ppg/(2p,S,) o, density diffusivity
N Brunt-Viisild frequency, (—gS,/p,)"” € dissipation rate, v(0u;/ axk)(agk /ox;)
Pr Prandtl number, v/, 7 Taylor microscale, (5vg*/e)"
V4 fluctuating pressure v klnematlc.wscosny
q velocity magnitude, (i;)"” 0 tOtaI. density )
Re;  Taylor microscale Reynolds number, g1/v P density fluctuation
Ri Richardson number, N?/S? Po ambient density
complex shear than the well-studied vertical shear case require d__ SVIETE — SwIFIE
systematic investigation. qp e = T ovialis — onlhlh
Ip the next section, important deﬁniti‘ons apd equations 1 By ou, ou; o,
are introduced. Then, the results of the simulations are pre- +— (pa— + pa—) B (5)
sented. First, the evolution of the velocity field is summa- Po *2 1 X OX
rized. Then, the evolution of the concentration fields is d
presented and compared to the velocity field. Finally, the — i3 = vaW*SHW*EW
turbulent mixing properties of the velocity and concentration dr Po
fields are compared. The last section contains a summary of du, dus Juy Ous
this work. +— 3 (17 o +p6_x1> T Vax, Oy (6)
. d - g 1 6142 6u3 auz au;
2. Equations @ 3 = Py —Up +— e <p o +p 6x2> o (7)
This study is based on the continuity equation of an in-
compressible fluid, the unsteady three-dimensional Navier— R - 20(662 dcy (8)
Stokes equation in the Boussinesq approximation, and trans- dr 20 T STy oy
port equations for the density and concentration fields. In the
following, x; refers to the streamwise direction, x, to the hor- d dc; Ocs
izontal direction, and x; to the vertical direction. The total 50353 = —2H3u3¢5 — 20‘6 . )
i O’
values of the velocity components U;, the density ¢, and the
concentration fields C; are decomposed into a mean part (de- d 1 o0 v 3o o
noted by an overbar) and a fluctuating part (denoted by a — ¢ = —Hyihu, + pJ -+ “)72 —2 (10)
small character): dt oy o e Oy
Ue=Ustum, e=ets, G=CGte M gm —H;u;u3—£qp+ 1P6C3 X(V-i-ot)ac3 %7 (11)
The mean parts have uniform gradients. In the vertical shear dr Po Oxy O O
case U; = Syx3d;; and in the horizontal shear case U; = Spx25;1.
Furthermore ¢ = p, 4+ S,x3 and C, = H,x,. Summation is im- d PP = —28,p — 20 dp dp 6p (12)
plied over repeated Arabic indices but not over Greek indices. dt " oxy oxy

Note, that indices are used to distinguish the components of
the velocity field as well as the different concentration fields.
While the components of the velocity field depend on each
other through the nonlinear term in the Navier—Stokes equa-
tion, the different concentration fields are independent of each
other and the index refers to the orientation of the mean
concentration gradient.

Transport equations can be derived from the equations of
motion (e.g. Lesieur, 1993):

o 2 ow B

S = -2 -2 -2 2
T Svunuz — 2Syuiu; + paxl V@xk oy’ @
d 2 61/12 m

— W = — 2y— — 3
ar 25125 popaxz vaxk axkv ( )
i g 2 us , Ous Ous

S =28 mp 4+ S p - 4
a 33 . uzp + Pop oxs o, Oy @

where v is the viscosity of the velocity field, o the diffusivity of
the concentration fields, and o, the diffusivity of the density
field. In these equations Sy is zero for the horizontal shear case
and Sy is zero for the vertical shear case. A transport equations
for the turbulent kinetic energy K = w;u;/2 can be derived from
Egs. (2)-(4):

d g Qu; D
—K = —Sviuz — Suuiir — =zp — v— —.
dr VU U3 HUU P uzp V@xk oxs
The potential energy K, = —ppg/(2p,S,) can be computed
from the density fluctuations.

(13)

3. Results

In the following sections, the results from two series of
simulations are presented. The first series has vertical shear
and the second series has horizontal shear. Both series are
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vertically stably stratified. In both series of simulations, the
Richardson number is varied from Ri=0 to Ri=0.5. All
simulations are initialized with an isotropic turbulence field
without fluctuations in the density and concentration fields.
The initial values of the Taylor microscale Reynolds
number Re;, = gA/v =33.54 and_the shear number SK/e =
2.0 are fixed. Here ¢ = (w;)"* is the magnitude of the
velocity, 4= (5v¢*/e)'? is the Taylor microscale, and
€ = v(Ou; /Ox; ) (Ou; /Ox;) is the dissipation rate. The Schmidt
number Sc=v/a=0.72 and the Prandtl number
Pr=v/a, =0.72 are fixed.

3.1. Velocity field

In this section, the evolution of the velocity field is dis-
cussed. Fig. 1 shows the evolution of the turbulent kinetic
energy K as a function of the Richardson number Ri. Initially,
the turbulent kinetic energy decays due to the isotropic initial
conditions. The further evolution depends on the value of the
Richardson number and on the direction of shear. As the
Richardson number is increased, the growth of the turbulent
kinetic energy weakens for both the vertical and horizontal
shear cases. In the vertical shear case, decay of K is found for
Richardson numbers Ri > 0.1. It was shown by Jacobitz and
Sarkar (1998) that Ri > 1.0 in required to observe decay of K
in the horizontal shear case. Also, for a given Richardson
number Ri, the horizontal shear case always shows stronger
growth than the vertical shear case. This is due to a direct
influence of gravity on the production term —Syiu; in the
vertical shear case (see Eq. (6)), but not on the production term
—Suuu; in the horizontal shear case (see Eq. (5)). Details on
the evolution of the turbulent kinetic energy K can be found in
Jacobitz and Sarkar (1998).

The evolution of the ratio of potential energy to turbulent
kinetic energy K,/K is shown in Fig. 2. In the vertical shear
case, the ratio K,/K reaches a constant value, indicating a
similar evolution of turbulent kinetic and potential energy. In
the horizontal shear case, this ratio tends to decrease in time.
This decrease is due to a reduced production of potential en-
ergy in the horizontal shear case.

Fig. 3 shows the evolution of the square of the velocity
components u? = uuy, u3 = Wi, and u3 = u3u;. The turbulent
kinetic energy is unevenly dlstrlbuted over the three compo-
nents. The streamwise component 7 is the largest component.
This is due to turbulent production adding energy to the
streamwise component (see Eq. (2)). The energy is then re-
distributed by the pressure-strain terms into the horizontal
and vertical velocity components. Finally, the buoyancy flux
converts vertical kinetic energy into potential energy (see Eq.
(4)). This suggests an ordering u} > u3 > u3. This is indeed
found for all Richardson numbers in the vertical shear case as
shown in Fig. 4. However, the horizontal shear simulations
show a different ordering u} > u3 > u3. In the horizontal shear
case, the vertical component is larger than the horizontal
component.

This can be explained with a different pressure—strain re-
distribution of turbulent kinetic energy from the streamwise
velocity component into the horizontal and vertical velocity
components. Fig. 5 shows the evolution of the ratio of the
pressure-strain terms —I133 /11y, and —IT»,/I1;; for the vertical
and horizontal shear cases. The dependence of the pressure—
strain terms on the Richardson number Ri at nondimensional
time St = 10 is shown in Fig. 6. Here, II; = 2p0u,/0x;/p,,
sz = 2p6u2/axz/p0, and H33 = 2p6u3/6x3/p0. Note that
I}, + ITy + 33 = 0. Generally, the vertical velocity compo-
nent receives more energy than the horizontal velocity com-
ponent. However, in the horizontal shear case, that difference
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Fig. 1. Evolution of the turbulent kinetic energy K as a function of the
Richardson number Ri for the vertical shear case (solid lines) and the
horizontal shear case (dashed lines).
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Fig. 2. Evolution of the ratio of potential energy to turbulent kinetic
energy K,/K as a function of the Richardson number Ri for the ver-
tical shear case (solid lines) and the horizontal shear case (dashed
lines).

is larger than in the vertical shear case. In the horizontal shear
case, the pressure—strain redistribution is large enough to
compensate for the loss of vertical kinetic energy due to the
buoyancy flux. Therefore, the vertical velocity component u3
contains more energy than the horizontal component #3 in the
horizontal shear case.

3.2. Concentration fields

In this section, the evolution of two scalar variables is
discussed. The first scalar C, has a uniform mean gradient
H, = 98C,/dx, in the horizontal direction and the second scalar
C; has a uniform mean gradient H; = 0C3/0x; in the vertical
direction.

Fig. 7 shows the evolution of the square of the fluctuating
concentrations ¢3 =3¢; and ¢ =¢¢; for the vertical and
horizontal shear cases with Ri = 0.2. In the vertical shear case,
% is much larger than ¢3. This is consistent with the ordering of
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Fig. 3. Evolution of the square of the velocity components u3, 13, and

u3 for the vertical shear case (solid lines) and the horizontal shear case
(dashed lines). The Richardson number is Ri = 0.2.
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Fig. 4. Dependence of the square of the velocity components 3, u3,
and 3 on the Richardson number Ri for the vertical shear case (filled
symbols) and the horizontal shear case (open symbols) at nondimen-
sional time Sz = 10. Circles correspond to u}, squares to 3, and dia-
monds to u3.

the square of the vertical and horizontal velocity components
with 43 > 3. In the horizontal shear case, ¢3 is only slightly
larger than c3. This is in contrast to the ordering of the square
of the velocity components with u3 > u3. However, ¢} is
strongly increased in the horizontal shear case compared to the
vertical shear case.

Fig. 8 shows the dependence of the square of the fluctuating
concentrations as a function of the Richardson number at
nondimensional time Sz = 10. Only in the weakly stratified
case with Ri = 0.1 is ¢3 larger than ¢3 in the horizontal shear
case.

The difference in the ordering of velocity components and
concentration fluctuations can be explained with a different
production mechanism. The horizontal and vertical velocity
components gain energy from a pressure-strain redistribution
from the streamwise velocity component. However, the
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Fig. 5. Evolution of the pressure-strain ratio —IT3;/I1,, and
—II5 /Iy, for the vertical shear case (solid lines) and the horizontal
shear case (dashed lines). The Richardson number is Ri = 0.2.
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Fig. 6. Dependence of the pressure-strain ratio —II3;/I1;; and
—II» /I, on the Richardson number Ri for the vertical shear case
(filled symbols) and the horizontal shear case (open symbols) at non-
dimensional time St = 10. Circles correspond to —I153/II}; and dia-
monds correspond to —I15 /1.

production terms —2H,u¢; and —2Hsuz¢; generate the fluc-
tuations of the concentration fields (see Egs. (8) and (9)).
The vertical scalar production —2Hsuz¢; is directly influenced
by gravity (see Eq. (11)), but the horizontal scalar produc-
tion —2H,u>¢; is not directly influenced by gravity (see Eq.
(10)).

Fig. 9 shows the dependence of the correlation coefficients
R(uy,c,) = m/(mm)'/z on the Richardson number Ri at
nondimensional time St = 10. In the vertical shear case, the
magnitude of R(uc;) increases as the Richardson number is
increased, but the magnitude of R(u;3c;) decreases strongly and
R(uzc3) changes sign for the Ri = 0.5 case. In the horizontal
shear case, the magnitude of R(uyc;) remains almost constant
and the magnitude of R(usc3) decreases slightly. This explains,
first, the ordering of the concentration fluctuations in the
vertical and horizontal shear cases and, second, the reduced
difference between ¢3 and ¢3 observed in the horizontal shear
case. Note that R(usc;) changes sign for large Richardson
number, indicating a counter-gradient flux in the vertical shear
case, but not in the horizontal shear case.
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Fig. 7. Evolution of the square of the concentration fluctuations c3
and ¢ for the vertical shear case (solid lines) and the horizontal shear
case (dashed lines). The Richardson number is Ri = 0.2.
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Fig. 8. Dependence of the square of the concentration fluctuations ¢3
and ¢3 on the Richardson number Ri for the vertical shear case (filled
symbols) and the horizontal shear case (open symbols) at nondimen-
sional time St = 10. Circles correspond to ¢3 and diamonds correspond
to 3.

3.3. Turbulent mixing

Turbulent mixing of momentum and mass can be studied
by consideration of the eddy viscosity v, of the velocity field
and the eddy diffusivity o, of the concentration fields. In the
vertical shear case, the vertical velocity gradient results in a
turbulent momentum transport in the vertical direction. In
the horizontal shear case, the horizontal velocity gradient
results in a turbulent momentum transport in the horizontal
direction:

\ ujus H uyus

y =——" Vo= —— 14
t SV ’ t SH ( )
The concentration fields have vertical as well as horizontal
gradients. Therefore, turbulent mass transport in the vertical
and horizontal directions can be considered
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Fig. 9. Dependence of the correlation coefficients R(u3c3) and R(uac,)
on the Richardson number Ri for the vertical shear case (filled sym-
bols) and the horizontal shear case (open symbols) at nondimensional
time St = 10. Circles correspond to R(u3c;) and diamonds correspond
to R(u;CZ).
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Fig. 10. Evolution of the eddy viscosity v, as a function of the Rich-
ardson number Ri for the vertical shear case (solid lines) and the
horizontal shear case (dashed lines).

(xt - 113 ’ t H2 .
In the following, the eddy viscosity v, and the eddy diffusivity
o, are computed from the direct numerical data.

Fig. 10 shows the evolution of the eddy viscosity v, as a
function of the Richardson number Ri for the vertical and
horizontal shear cases. As the Richardson number is increased,
the eddy viscosity v, is decreased. However, for a given Rich-
ardson number Ri, the eddy viscosity vF of the horizontal
shear case is always larger than the eddy viscosity v' of the
vertical shear case.

In order to compare the effect of turbulence on the mixing
of momentum and mass, the turbulent Schmidt number Sc; is
considered. In the vertical shear case, the turbulent Schmidt
number is defined as the ratio of the turbulent diffusivities of
momentum and mass in the vertical direction. In the hori-
zontal shear case, the turbulent Schmidt number is defined as

vo BG  a hG (15)
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Fig. 11. Evolution of the turbulent Schmidt number S¢, as a function
of the Richardson number Ri for the vertical shear case (solid lines)
and the horizontal shear case (dashed lines).
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Fig. 12. Evolution of the ratio of vertical eddy diffusivity to horizontal
eddy diffusivity o /ot as a function of the Richardson number Ri
for the vertical shear case (solid lines) and the horizontal shear case
(dashed lines).

the ratio of the turbulent diffusivities of momentum and mass
in the horizontal direction

Se¥ =vW/a), Sclt =yl /ol (16)
The evolution of the turbulent Schmidt number Sc, as a
function of the Richardson number Ri is shown in Fig. 11. In
the vertical shear case, the turbulent Schmidt number Scy in-
creases as the Richardson number is increased. This is con-
sistent with the results of Schumann and Gerz (1995). In the
horizontal shear case, however, the turbulent Schmidt number,
remains constant and close to the value of the molecular
Schmidt number Sc = 0.72 for all Richardson numbers.

Fig. 12 shows the evolution of the ratio of the vertical eddy
diffusivity to the horizontal diffusivity & /af'. In the vertical
and horizontal shear cases, the ratio o /il decreases as the
Richardson number Ri is increased. Here, the increasing den-
sity stratification inhibits vertical transport. The ratio o /o is
always larger in the horizontal shear case compared to the

vertical shear case for a given Richardson number. In the
Ri = 0.1 case with horizontal the ratio is larger than 1.

4. Summary

Turbulent stratified shear flow has been studied using direct
numerical simulations. Two series of simulations have been
performed. The first series has vertical shear and the second
series has horizontal shear. Both series are vertically stably
stratified. It was found that the growth of the turbulent kinetic
energy weakens as the Richardson number is increased.
However, for the same value of the Richardson number, the
horizontal shear case shows a stronger growth of the turbulent
kinetic energy than the vertical shear case.

The turbulent kinetic energy is unevenly distributed over
the velocity components. In the vertical shear case, the velocity
components are ordered streamwise > horizontal > vertical.
However, in the horizontal shear case, the order is changed to
streamwise > vertical > horizontal. The change in the ordering
of the horizontal and vertical velocity components can be ex-
plained by an increased pressure-strain redistribution of en-
ergy into the vertical velocity component in the horizontal
shear case.

In addition, the evolution of concentration fields with mean
gradients in the horizontal and vertical direction was studied.
It was found that the concentration fluctuation of the species
with the horizontal gradient is generally larger than the con-
centration fluctuation of the species with the vertical gradient.
Only the low Richardson number case with horizontal shear
shows the opposite result. This result is in contrast to the
finding that the vertical velocity fluctuation is larger that the
horizontal velocity fluctuation in the horizontal shear case.
However, it can be explained with a decrease of the vertical
correlation coefficient R(u3c3) that controls the generation of
vertical concentration fluctuations.

Finally, the turbulent transport properties of momentum
and mass were compared. It was found that the turbulent eddy
viscosities and diffusivities decrease as the Richardson number
is increased. However, the eddy viscosity is always larger in the
horizontal shear case compared to the vertical shear case for a
given Richardson number. Also, the ratio of vertical eddy
diffusivity to horizontal eddy diffusivity is always larger in the
horizontal shear case for a given Richardson number.
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