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Abstract

In this study, the evolution of the velocity ®eld and scalar concentration ®elds in stably strati®ed shear ¯ow is studied using direct

numerical simulations. Two cases with vertical mean shear and horizontal mean shear are compared. In both cases, the growth of the

turbulent kinetic energy weakens as the Richardson number is increased. However, the horizontal shear case shows a stronger growth

of the turbulent kinetic energy than the vertical shear case for a given Richardson number. The ordering of the velocity components

was found to change from streamwise > horizontal > vertical in the vertical shear case to streamwise > vertical > horizontal in the

horizontal shear case. The ¯uctuation level of a passive species variable with a vertical mean gradient was observed to be stronger in

the horizontal shear case. The ratio of the vertical turbulent eddy di�usivity to the horizontal turbulent eddy di�usivity was found to

be larger in the horizontal shear case. Ó 2000 Begell House Inc. Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

Shear and strati®cation are important features of turbulent
¯ow in geophysical, environmental, and engineering applica-
tions. Nutrients, pollutants, or reactants present in these ¯ows
are transported and mixed by the turbulent motion. However,
the turbulence evolution is in¯uenced by the competing e�ects
of shear and strati®cation. A review of geophysical turbulence
can be found in Caldwell (1987) and in Caldwell and Moum
(1995).

In this study, the prototypical example of strati®ed shear
¯ow with uniform vertical strati®cation Sq � o.=ox3 and uni-
form vertical shear SV � oU1=ox3 or uniform horizontal shear
SH � oU1=ox2 is considered. In addition, two passive species
variables Ci are introduced with uniform mean gradients in the
vertical direction H3 � oC3=ox3 and in the horizontal direction
H2 � oC2=ox2.

Previous work has been focused on the vertical shear case.
Laboratory experiments have been performed by Rohr et al.
(1988) in a salt-strati®ed water channel and by Piccirillo and
Van Atta (1997) in a thermally strati®ed wind tunnel. Direct
numerical simulations have been performed by Gerz et al.
(1989), Holt et al. (1992), and Jacobitz et al. (1997). In these
investigations, the gradient Richardson number Ri � N 2=S2

was identi®ed as the primary parameter in strati®ed shear ¯ow.

Here N � �ÿgSq=q0�1=2
is the Brunt±V�ais�al�a frequency, S the

shear rate, g the gravity acceleration, and q0 the ambient
density. Note that S can refer to the vertical shear rate SV was
well as to the horizontal shear rate SH. Passive species variables

were included in the large eddy simulations by Kaltenbach
et al. (1994). It was found that the turbulent mixing of these
concentration ®elds is stronger in the horizontal direction than
in the vertical direction.

Nonvertical shear ¯ow has been studied only recently by
Jacobitz and Sarkar (1998). It was found that the turbulent
¯uctuations as well as the vertical transport are stronger in the
horizontal shear case. However, it was impossible to compare
horizontal momentum and mass transfer in the horizontal
shear simulations, since the mass transfer was always in the
vertical direction. The introduction of concentration ®elds
makes such a comparison possible in the present study.

A number of geophysical and environmental applications
may have a signi®cant amount of horizontal shear. Farmer
et al. (1995) observed strong horizontal shear and mixing in
Haro Strait and so did the numerical simulations by Foreman
et al. (1993) of the same ¯ow. Farmer et al. report horizontal
shear as large as SH � 0:15 sÿ1 at the frontal zone between the
con¯uence of tidal waters with di�erent densities from the
Haro and Spieden Channels. The vertical shear can be esti-
mated from the maximum current speed of 1 m sÿ1 and layer
thickness of 50 m as SV � 0:02 sÿ1. Lueck and Mudge (1997)
found greatly increased dissipation rates in the vicinity of a
shallow seamount. Although vertical shear is large in the
vicinity of bottom topography, the horizontal shear compo-
nent can be substantial due to the horizontal variability of the
topographic features. Mixing near boundaries may be an
important contributor to the overall budget of ocean mixing as
proposed by Armi (1978) and thus reconcile the apparent
order of magnitude larger vertical di�usivity inferred from
global budgets by Munk (1966) with respect to that observed
in the main thermocline (see for example, Gregg, 1987). If
boundary mixing is indeed important, then ¯ows with more
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complex shear than the well-studied vertical shear case require
systematic investigation.

In the next section, important de®nitions and equations
are introduced. Then, the results of the simulations are pre-
sented. First, the evolution of the velocity ®eld is summa-
rized. Then, the evolution of the concentration ®elds is
presented and compared to the velocity ®eld. Finally, the
turbulent mixing properties of the velocity and concentration
®elds are compared. The last section contains a summary of
this work.

2. Equations

This study is based on the continuity equation of an in-
compressible ¯uid, the unsteady three-dimensional Navier±
Stokes equation in the Boussinesq approximation, and trans-
port equations for the density and concentration ®elds. In the
following, x1 refers to the streamwise direction, x2 to the hor-
izontal direction, and x3 to the vertical direction. The total
values of the velocity components Ui, the density ., and the
concentration ®elds Ci are decomposed into a mean part (de-
noted by an overbar) and a ¯uctuating part (denoted by a
small character):

Ui � U i � ui; . � .� q; Ci � Ci � ci: �1�
The mean parts have uniform gradients. In the vertical shear
case Ui � SVx3di1 and in the horizontal shear case Ui � SHx2di1.
Furthermore . � q0 � Sqx3 and Ca � Haxa. Summation is im-
plied over repeated Arabic indices but not over Greek indices.
Note, that indices are used to distinguish the components of
the velocity ®eld as well as the di�erent concentration ®elds.
While the components of the velocity ®eld depend on each
other through the nonlinear term in the Navier±Stokes equa-
tion, the di�erent concentration ®elds are independent of each
other and the index refers to the orientation of the mean
concentration gradient.

Transport equations can be derived from the equations of
motion (e.g. Lesieur, 1993):

d

dt
u1u1 � ÿ2SVu1u3 ÿ 2SHu1u2 � 2

q0

p
ou1

ox1

ÿ 2m
ou1

oxk

ou1

oxk
; �2�

d

dt
u2u2 � 2

q0

p
ou2

ox2

ÿ 2m
ou2

oxk

ou2

oxk
; �3�

d

dt
u3u3 � ÿ2

g
q0

u3q� 2

q0

p
ou3

ox3

ÿ 2m
ou3

oxk

ou3

oxk
; �4�

d

dt
u1u2 �ÿ SVu2u3 ÿ SHu2u2

� 1

q0

p
ou1

ox2

�
� p

ou2

ox1

�
ÿ 2m

ou1

oxk

ou2

oxk
; �5�

d

dt
u1u3 �ÿ SVu3u3 ÿ SHu2u3 ÿ g

q0

u1q

� 1

q0

p
ou1

ox3

�
� p

ou3

ox1

�
ÿ 2m

ou1

oxk

ou3

oxk
; �6�

d

dt
u2u3 � ÿ g

q0

u2q� 1

q0

p
ou2

ox3

�
� p

ou3

ox2

�
ÿ 2m

ou2

oxk

ou3

oxk
; �7�

d

dt
c2c2 � ÿ2H2u2c2 ÿ 2a

oc2

oxk

oc2

oxk
; �8�

d

dt
c3c3 � ÿ2H3u3c3 ÿ 2a

oc3

oxk

oc3

oxk
; �9�

d

dt
u2c2 � ÿH2u2u2 � 1

q0

p
oc2

ox2

ÿ m
a
�m� a�oc2

oxk

ou2

oxk
; �10�

d

dt
u3c3 � ÿH3u3u3 ÿ g

q0

c3q� 1

q0

p
oc3

ox3

ÿ m
a
�m� a�oc3

oxk

ou3

oxk
; �11�

d

dt
qq � ÿ2Squ3qÿ 2aq

oq
oxk

oq
oxk

; �12�

where m is the viscosity of the velocity ®eld, a the di�usivity of
the concentration ®elds, and aq the di�usivity of the density
®eld. In these equations SV is zero for the horizontal shear case
and SH is zero for the vertical shear case. A transport equations
for the turbulent kinetic energy K � uiui=2 can be derived from
Eqs. (2)±(4):

d

dt
K � ÿSVu1u3 ÿ SHu1u2 ÿ g

q0

u3qÿ m
oui

oxk

oui

oxk
: �13�

The potential energy Kq � ÿqqg=�2q0Sq� can be computed
from the density ¯uctuations.

3. Results

In the following sections, the results from two series of
simulations are presented. The ®rst series has vertical shear
and the second series has horizontal shear. Both series are

Notation

Ci total passive scalar
ci ¯uctuating passive scalar
g gravity acceleration
H2 horizontal mean gradient, oC2=ox2

H3 vertical mean gradient, oC3=ox3

K turbulent kinetic energy, uiui=2
Kq potential energy, ÿqqg=�2q0Sq�
N Brunt±V�ais�al�a frequency, �ÿgSq=q0�1=2

Pr Prandtl number, m=aq

p ¯uctuating pressure
q velocity magnitude, �uiui�1=2

Rek Taylor microscale Reynolds number, qk=m
Ri Richardson number, N 2=S2

S horizontal or vertical shear rate
SH horizontal shear rate, oU1=ox2

SV vertical shear rate, oU1=ox3

Sq vertical strati®cation rate, @.=ox3

Sc Schmidt number, m=a
Ui total velocity
ui ¯uctuating velocity
a passive scalar di�usivity
aq density di�usivity
� dissipation rate, m�oui=oxk��ouk=oxi�
k Taylor microscale, �5mq2=��1=2

m kinematic viscosity
. total density
q density ¯uctuation
q0 ambient density

536 F.G. Jacobitz / Int. J. Heat and Fluid Flow 21 (2000) 535±541



vertically stably strati®ed. In both series of simulations, the
Richardson number is varied from Ri � 0 to Ri � 0:5. All
simulations are initialized with an isotropic turbulence ®eld
without ¯uctuations in the density and concentration ®elds.
The initial values of the Taylor microscale Reynolds
number Rek � qk=m � 33:54 and the shear number SK=� �
2:0 are ®xed. Here q � �uiui�1=2

is the magnitude of the

velocity, k � �5mq2=��1=2
is the Taylor microscale, and

� � m�oui=oxk��oui=oxk� is the dissipation rate. The Schmidt
number Sc � m=a � 0:72 and the Prandtl number
Pr � m=aq � 0:72 are ®xed.

3.1. Velocity ®eld

In this section, the evolution of the velocity ®eld is dis-
cussed. Fig. 1 shows the evolution of the turbulent kinetic
energy K as a function of the Richardson number Ri. Initially,
the turbulent kinetic energy decays due to the isotropic initial
conditions. The further evolution depends on the value of the
Richardson number and on the direction of shear. As the
Richardson number is increased, the growth of the turbulent
kinetic energy weakens for both the vertical and horizontal
shear cases. In the vertical shear case, decay of K is found for
Richardson numbers Ri > 0:1. It was shown by Jacobitz and
Sarkar (1998) that Ri > 1:0 in required to observe decay of K
in the horizontal shear case. Also, for a given Richardson
number Ri, the horizontal shear case always shows stronger
growth than the vertical shear case. This is due to a direct
in¯uence of gravity on the production term ÿSVu1u3 in the
vertical shear case (see Eq. (6)), but not on the production term
ÿSHu1u2 in the horizontal shear case (see Eq. (5)). Details on
the evolution of the turbulent kinetic energy K can be found in
Jacobitz and Sarkar (1998).

The evolution of the ratio of potential energy to turbulent
kinetic energy Kq=K is shown in Fig. 2. In the vertical shear
case, the ratio Kq=K reaches a constant value, indicating a
similar evolution of turbulent kinetic and potential energy. In
the horizontal shear case, this ratio tends to decrease in time.
This decrease is due to a reduced production of potential en-
ergy in the horizontal shear case.

Fig. 3 shows the evolution of the square of the velocity
components u2

1 � u1u1, u2
2 � u2u2, and u2

3 � u3u3. The turbulent
kinetic energy is unevenly distributed over the three compo-
nents. The streamwise component u2

1 is the largest component.
This is due to turbulent production adding energy to the
streamwise component (see Eq. (2)). The energy is then re-
distributed by the pressure±strain terms into the horizontal
and vertical velocity components. Finally, the buoyancy ¯ux
converts vertical kinetic energy into potential energy (see Eq.
(4)). This suggests an ordering u2

1 > u2
2 > u2

3. This is indeed
found for all Richardson numbers in the vertical shear case as
shown in Fig. 4. However, the horizontal shear simulations
show a di�erent ordering u2

1 > u2
3 > u2

2. In the horizontal shear
case, the vertical component is larger than the horizontal
component.

This can be explained with a di�erent pressure±strain re-
distribution of turbulent kinetic energy from the streamwise
velocity component into the horizontal and vertical velocity
components. Fig. 5 shows the evolution of the ratio of the
pressure±strain terms ÿP33=P11 and ÿP22=P11 for the vertical
and horizontal shear cases. The dependence of the pressure±
strain terms on the Richardson number Ri at nondimensional
time St � 10 is shown in Fig. 6. Here, P11 � 2pou1=ox1=q0,

P22 � 2pou2=ox2=q0, and P33 � 2pou3=ox3=q0. Note that
P11 �P22 �P33 � 0. Generally, the vertical velocity compo-
nent receives more energy than the horizontal velocity com-
ponent. However, in the horizontal shear case, that di�erence

is larger than in the vertical shear case. In the horizontal shear
case, the pressure±strain redistribution is large enough to
compensate for the loss of vertical kinetic energy due to the
buoyancy ¯ux. Therefore, the vertical velocity component u2

3

contains more energy than the horizontal component u2
2 in the

horizontal shear case.

3.2. Concentration ®elds

In this section, the evolution of two scalar variables is
discussed. The ®rst scalar C2 has a uniform mean gradient
H2 � oC2=ox2 in the horizontal direction and the second scalar
C3 has a uniform mean gradient H3 � oC3=ox3 in the vertical
direction.

Fig. 7 shows the evolution of the square of the ¯uctuating
concentrations c2

3 � c3c3 and c2
2 � c2c2 for the vertical and

horizontal shear cases with Ri � 0:2. In the vertical shear case,
c2

2 is much larger than c2
3. This is consistent with the ordering of

Fig. 1. Evolution of the turbulent kinetic energy K as a function of the

Richardson number Ri for the vertical shear case (solid lines) and the

horizontal shear case (dashed lines).

Fig. 2. Evolution of the ratio of potential energy to turbulent kinetic

energy Kq=K as a function of the Richardson number Ri for the ver-

tical shear case (solid lines) and the horizontal shear case (dashed

lines).
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the square of the vertical and horizontal velocity components
with u2

2 > u2
3. In the horizontal shear case, c2

2 is only slightly
larger than c2

3. This is in contrast to the ordering of the square
of the velocity components with u2

3 > u2
2. However, c2

3 is
strongly increased in the horizontal shear case compared to the
vertical shear case.

Fig. 8 shows the dependence of the square of the ¯uctuating
concentrations as a function of the Richardson number at
nondimensional time St � 10. Only in the weakly strati®ed
case with Ri � 0:1 is c2

3 larger than c2
2 in the horizontal shear

case.
The di�erence in the ordering of velocity components and

concentration ¯uctuations can be explained with a di�erent
production mechanism. The horizontal and vertical velocity
components gain energy from a pressure±strain redistribution
from the streamwise velocity component. However, the

production terms ÿ2H2u2c2 and ÿ2H3u3c3 generate the ¯uc-
tuations of the concentration ®elds (see Eqs. (8) and (9)).
The vertical scalar production ÿ2H3u3c3 is directly in¯uenced
by gravity (see Eq. (11)), but the horizontal scalar produc-
tion ÿ2H2u2c2 is not directly in¯uenced by gravity (see Eq.
(10)).

Fig. 9 shows the dependence of the correlation coe�cients
R�uaca� � uaca=�uaua caca�1=2

on the Richardson number Ri at
nondimensional time St � 10. In the vertical shear case, the
magnitude of R�u2c2� increases as the Richardson number is
increased, but the magnitude of R�u3c3� decreases strongly and
R�u3c3� changes sign for the Ri � 0:5 case. In the horizontal
shear case, the magnitude of R�u2c2� remains almost constant
and the magnitude of R�u3c3� decreases slightly. This explains,
®rst, the ordering of the concentration ¯uctuations in the
vertical and horizontal shear cases and, second, the reduced
di�erence between c2

2 and c2
3 observed in the horizontal shear

case. Note that R�u3c3� changes sign for large Richardson
number, indicating a counter-gradient ¯ux in the vertical shear
case, but not in the horizontal shear case.

Fig. 4. Dependence of the square of the velocity components u2
1, u2

2,

and u2
3 on the Richardson number Ri for the vertical shear case (®lled

symbols) and the horizontal shear case (open symbols) at nondimen-

sional time St � 10. Circles correspond to u2
1, squares to u2

2, and dia-

monds to u2
3.

Fig. 6. Dependence of the pressure±strain ratio ÿP33=P11 and

ÿP22=P11 on the Richardson number Ri for the vertical shear case

(®lled symbols) and the horizontal shear case (open symbols) at non-

dimensional time St � 10. Circles correspond to ÿP33=P11 and dia-

monds correspond to ÿP22=P11.

Fig. 3. Evolution of the square of the velocity components u2
1, u2

2, and

u2
3 for the vertical shear case (solid lines) and the horizontal shear case

(dashed lines). The Richardson number is Ri � 0:2.

Fig. 5. Evolution of the pressure±strain ratio ÿP33=P11 and

ÿP22=P11 for the vertical shear case (solid lines) and the horizontal

shear case (dashed lines). The Richardson number is Ri � 0:2.
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3.3. Turbulent mixing

Turbulent mixing of momentum and mass can be studied
by consideration of the eddy viscosity mt of the velocity ®eld
and the eddy di�usivity at of the concentration ®elds. In the
vertical shear case, the vertical velocity gradient results in a
turbulent momentum transport in the vertical direction. In
the horizontal shear case, the horizontal velocity gradient
results in a turbulent momentum transport in the horizontal
direction:

mV
t � ÿ

u1u3

SV

; mH
t � ÿ

u1u2

SH

: �14�

The concentration ®elds have vertical as well as horizontal
gradients. Therefore, turbulent mass transport in the vertical
and horizontal directions can be considered

aV
t � ÿ

u3c3

H3

; aH
t � ÿ

u2c2

H2

: �15�

In the following, the eddy viscosity mt and the eddy di�usivity
at are computed from the direct numerical data.

Fig. 10 shows the evolution of the eddy viscosity mt as a
function of the Richardson number Ri for the vertical and
horizontal shear cases. As the Richardson number is increased,
the eddy viscosity mt is decreased. However, for a given Rich-
ardson number Ri, the eddy viscosity mH

t of the horizontal
shear case is always larger than the eddy viscosity mV

t of the
vertical shear case.

In order to compare the e�ect of turbulence on the mixing
of momentum and mass, the turbulent Schmidt number Sct is
considered. In the vertical shear case, the turbulent Schmidt
number is de®ned as the ratio of the turbulent di�usivities of
momentum and mass in the vertical direction. In the hori-
zontal shear case, the turbulent Schmidt number is de®ned as

Fig. 10. Evolution of the eddy viscosity mt as a function of the Rich-

ardson number Ri for the vertical shear case (solid lines) and the

horizontal shear case (dashed lines).

Fig. 8. Dependence of the square of the concentration ¯uctuations c2
2

and c2
3 on the Richardson number Ri for the vertical shear case (®lled

symbols) and the horizontal shear case (open symbols) at nondimen-

sional time St � 10. Circles correspond to c2
3 and diamonds correspond

to c2
2.

Fig. 9. Dependence of the correlation coe�cients R�u3c3� and R�u2c2�
on the Richardson number Ri for the vertical shear case (®lled sym-

bols) and the horizontal shear case (open symbols) at nondimensional

time St � 10. Circles correspond to R�u3c3� and diamonds correspond

to R�u2c2�.

Fig. 7. Evolution of the square of the concentration ¯uctuations c2
2

and c2
3 for the vertical shear case (solid lines) and the horizontal shear

case (dashed lines). The Richardson number is Ri � 0:2.
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the ratio of the turbulent di�usivities of momentum and mass
in the horizontal direction

ScV
t � mV

t =a
V
t ; ScH

t � mH
t =a

H
t : �16�

The evolution of the turbulent Schmidt number Sct as a
function of the Richardson number Ri is shown in Fig. 11. In
the vertical shear case, the turbulent Schmidt number ScV

t in-
creases as the Richardson number is increased. This is con-
sistent with the results of Schumann and Gerz (1995). In the
horizontal shear case, however, the turbulent Schmidt number,
remains constant and close to the value of the molecular
Schmidt number Sc � 0:72 for all Richardson numbers.

Fig. 12 shows the evolution of the ratio of the vertical eddy
di�usivity to the horizontal di�usivity aV

t =a
H
t . In the vertical

and horizontal shear cases, the ratio aV
t =a

H
t decreases as the

Richardson number Ri is increased. Here, the increasing den-
sity strati®cation inhibits vertical transport. The ratio aV

t =a
H
t is

always larger in the horizontal shear case compared to the

vertical shear case for a given Richardson number. In the
Ri � 0:1 case with horizontal the ratio is larger than 1.

4. Summary

Turbulent strati®ed shear ¯ow has been studied using direct
numerical simulations. Two series of simulations have been
performed. The ®rst series has vertical shear and the second
series has horizontal shear. Both series are vertically stably
strati®ed. It was found that the growth of the turbulent kinetic
energy weakens as the Richardson number is increased.
However, for the same value of the Richardson number, the
horizontal shear case shows a stronger growth of the turbulent
kinetic energy than the vertical shear case.

The turbulent kinetic energy is unevenly distributed over
the velocity components. In the vertical shear case, the velocity
components are ordered streamwise > horizontal > vertical.
However, in the horizontal shear case, the order is changed to
streamwise > vertical > horizontal. The change in the ordering
of the horizontal and vertical velocity components can be ex-
plained by an increased pressure±strain redistribution of en-
ergy into the vertical velocity component in the horizontal
shear case.

In addition, the evolution of concentration ®elds with mean
gradients in the horizontal and vertical direction was studied.
It was found that the concentration ¯uctuation of the species
with the horizontal gradient is generally larger than the con-
centration ¯uctuation of the species with the vertical gradient.
Only the low Richardson number case with horizontal shear
shows the opposite result. This result is in contrast to the
®nding that the vertical velocity ¯uctuation is larger that the
horizontal velocity ¯uctuation in the horizontal shear case.
However, it can be explained with a decrease of the vertical
correlation coe�cient R�u3c3� that controls the generation of
vertical concentration ¯uctuations.

Finally, the turbulent transport properties of momentum
and mass were compared. It was found that the turbulent eddy
viscosities and di�usivities decrease as the Richardson number
is increased. However, the eddy viscosity is always larger in the
horizontal shear case compared to the vertical shear case for a
given Richardson number. Also, the ratio of vertical eddy
di�usivity to horizontal eddy di�usivity is always larger in the
horizontal shear case for a given Richardson number.
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